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A recent paper in this journal presented new recommendations
for the effective mass for one-dimensional models of tunneling
contributions to chemical reactions.1 Unfortunately the paper
involves fundamental misconceptions, and the recommended
changes to standard procedures follow from an incorrect
derivation rather than from any improvement in modeling the
physics. This comment is an attempt to clarify the issues.

It is necessary to distinguish various coordinate systems for
describing the nuclear motion of anN-atom system. First
consideratomic Cartesians Riγ, with i ) 1, ...,N, γ ) x, y, z,
or Rj, with j ) 1, ..., 3N. The kinetic energy is

wheremi is the mass of atomi, and an overdot denotes a time
derivative. Spectroscopists usually prefermass-weighted Car-
tesians qiγ defined by2a

The kinetic energy is

This coordinate system has the disadvantage that “distance” has
units of mass1/2 length, which is unphysical, but the advantage
that it is “isoinertial”, i.e., the mass is the same for motion in
any direction. A more physical isoinertial coordinate system is
the set ofmass-scaled Cartesiansdefined by

for which

Note that the scaling massµ can take any convenient value. A

popular choice is 1 atomic mass unit (amu), and for this choice
the numerical value ofxiγ in angstroms (Å) is the same as the
numerical value ofqiγ in amul/2 Å.

For any of these coordinates, the form of the kinetic energy
is unchanged by moving the origin. Thus spectroscopicists often
use mass-weighted Cartesian displacement coordinates∆qiγ
defined as2a

where subscript e denotes the classical equilibrium value.
However, if one considers a more general linear transforma-

tion, e.g.,

wherey is R, q, or x, then the mass for coordinateyiγ must be
multiplied byAi

-2. This is the root of the error in ref 1. It does
not make sense to discuss the correct choice of “effective mass”
unless one specifies the coordinate system. Thus when the
authors say that their treatment gives a mass of “1/3 amu, in
contrast to the value of 1 amu obtained by the HVA method”,1

they make precisely this error. In particular, by HVA they denote
a standard harmonic vibrational analysis involving normal mode
coordinatesQj with j ) 1, ..., 3N, which are an orthogonal
transformation2b of mass-weighted Cartesian displacement
coordinates employing a mass unit of 1 amu. The orthogonal
transformation is equivalent to

where xj is defined with µ ) 1 amu, and whereL is an
orthogonal matrix. For this kind of matrix

and therefore the mass does not change, i.e., it remains 1 amu.
However, the authors of ref 1 are using a different coordinate
system to define the mass, so that, even though they have not
introduced any new physics compared to ref 2, they can and
do obtain a different mass for motion along the transition vector,
which is the imaginary-frequency normal mode. But this is just
a trivial difference due to a different scaling of the coordinates,
and the authors are wrong to imply that their treatment is more
appropriate than the standard one. In fact, the authors obtain
different numerical results than the standard treatment for the
imaginary frequency and the tunneling correction because they
are inconsistent. The inconsistency is most easily explained by
a one-dimensional example. The vibrational frequency (in
radians/s) is

whereF is the force constant given by
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whereV is potential energy. We have just explained that the
value to use for the massm depends on the scaling of the
coordinatey. When one is consistent, the effect of scalingy is
exactly canceled by the change inm in eq 9. The authors of ref
1 take the force constants from a standard harmonic analysis
that uses 1 amu, but they takem from their own analysis with
a different coordinate system, and thus theirω is wrong.

The coordinates in eqs 1-7 are all special cases ofrectilinear
coordinates,which means that they arelinear combinations of
atomic Cartesians with constant coefficients. The masses
corresponding to rectilinear coordinates are constants. Chemists
often prefer to use coordinates such as bond distances and bond
angles, which arenonlinearfunctions of atomic Cartesians. Such
coordinates are calledcurVilinear. (Rectilinear coordinates
correspond to straight lines in an atomic Cartesian coordinate
system, whereas curvilinear coordinates correspond to curved
lines in such a system.) For curvilinear coordinates, the masses
depend on geometry, i.e., they are not constants. Furthermore,
unlike eqs 1, 3, and 5, there are cross terms in the kinetic energy.
Thus the mass arraymi with one index must be replaced by a
tensor or matrix with two indices. In fact, the matrixG is usually
defined with units of reciprocal mass such that (G-1)jk tends to
mjδjk in the rectilinear case, whereδjk is the kronecker delta.

Harmonic vibrational analysis is suitable for small displace-
ments2a from a stationary point, which may be an equilibrium
geometry or a saddle point. The standard treatment of harmonic
vibrations in curvilinear coordinates2c was developed for equi-
librium geometries, but it is equally valid at saddle points. In
the standard treatment, the geometry dependence of the masses
is ignored, and harmonic frequenices are evaluated at the
stationary-point geometry. It was appreciated by the original
workers that this is sufficient because of the restriction of
harmonic analysis to small vibrations,2c and in fact the curvi-
linear and rectilinear treatments always give the same frequen-
cies at geometries where the gradient ofV vanishes.3 In ref 1,
the mass is evaluated only at the stationary point as well. As
explained above, the source of error is that this mass is used
with an inconsistent force constant. If the force constant were
evaluated by eq 10 with the same coordinate as used to calculate
the mass, then all differences from the standard treatments2,4,5

would disappear.
All conclusions about tunneling in ref 1 are affected by this

fundamental error and are meaningless. However, ref 1 does
raise two additional issues that deserve a few comments, namely,
the language of “reduced mass” vs “effective mass” and the
usefulness (or not) of one-dimensional tunneling treatments.

“Reduced mass” is a term for the appropriate mass corre-
sponding to a linear combination of coordinates involving two
or more individual particles (in the present context the particles
are atoms). No dynamical approximation is implied. An effective
mass is a mass used for some coordinate in order to take account
of other degrees of freedom that are not treated explicitly or
that are treated approximately (as, for example, in some
treatments of tunneling8). All masses in ref 1, except the original
atomic masses, are reduced masses. The use of the term
“effective mass” in ref 1 does not imply a higher-level dynamical
treatment but rather an inconsistent treatment of reduced mass.

In general, we can classify tunneling approximations in a
number of different ways, but for the present discussion we
recognize three levels: (1) one-dimensional approximations,

such as the treatments of Wigner4 and Bell,5 (2) multidimen-
sional zero-curvature approximations such as the vibrationally
adiabatic approximation,6 and (3) multidimensional corner-
cutting approximations such as the small-curvature tunneling
(SCT) and large-curvature tunneling (LCT) approximations.7

Although the derivation of the mass in ref 1 mentions the
curvature of the reaction path, the dynamical treatment is
identical to the one-dimensional treatment of Wigner4 but with
an incorrect calculation of the imaginary frequency of the saddle
point. Reference 1 concluded that one-dimensional tunneling
models in the literature have used an inappropriate mass, and
the essence of our comment so far is that this conclusion is
based on an inconsistent evaluation of the reduced mass. But
we want to make it clear that this is not a defense of
one-dimensional tunneling models, which are seldom justified
in cases where tunneling is significant. The Wigner approxima-
tion, which is used exclusively in ref 1, is the simplest of these
one-dimensional tunneling approximations, and it is used there
for transmission coefficients (κ) as large as 26.99. The Wigner
approximation represents the first two terms in a power series

approximation to the one-dimensional model, and it is not
appropriate to truncate such a series after two terms if the second
term is 25.99 times larger than the first (or even if it is twice as
large as the first or 0.75 times as large). Furthermore the one-
dimensional model is seldom valid even if evaluated correctly
because, for reactions with appreciable hydrogenic motion in
the reaction coordinate (which are the only cases for which we
usually need be concerned about tunneling), the dominant
tunneling paths usually sample regions of the potential energy
surface where the quadratic expansion about the saddle point
breaks down, and this calls for multidimensional7 treatments.
In some cases one can recast such treatments as pseudo-one-
dimensional models with effective masses,9 and such treatments
should not be confused with the inconsistent use of reduced
mass in ref 1.
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